Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Elife ; 132024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426402

RESUMO

Investigating how, when, and what subjects learn during decision-making tasks requires tracking their choice strategies on a trial-by-trial basis. Here, we present a simple but effective probabilistic approach to tracking choice strategies at trial resolution using Bayesian evidence accumulation. We show this approach identifies both successful learning and the exploratory strategies used in decision tasks performed by humans, non-human primates, rats, and synthetic agents. Both when subjects learn and when rules change the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that subjects have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.


Assuntos
Comportamento de Escolha , Aprendizagem , Humanos , Ratos , Animais , Teorema de Bayes , Recompensa , Primatas
2.
Genes Brain Behav ; 22(6): e12870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38123893

RESUMO

In this issue, Griesius et al report that heterozygous Dlg2+/- rats showed a reversal learning impairment on a specific bowl-digging task, whereas other reversal tasks were unaffected. The study suggests that Dlg2 gene disruption, which has been linked to neuropsychiatric disorders, including schizophrenia, may cause relatively specific impairments in reversal learning, an important aspect of cognitive flexibility. The study draws attention to two important issues regarding the neuro-behavioral mechanisms of reversal learning, namely that hippocampal dysfunction, which is prominent in Dlg2+/- rats, may contribute to reversal learning impairments and that, depending on the task and previous experience, brain and behavioral mechanisms of reversal learning may differ.


Assuntos
Reversão de Aprendizagem , Esquizofrenia , Humanos , Ratos , Animais , Esquizofrenia/genética , Heterozigoto
3.
Sci Rep ; 13(1): 17631, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848657

RESUMO

Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA. D1R blockade altered DH-VH and reduced VH-PL and VH-BLA synchrony during CFC, as inferred from theta and gamma coherence and theta-gamma coupling. D1R blockade also impaired CFC, as indicated by decreased freezing at retrieval, which was characterized by altered DH-VH and reduced VH-PL, VH-BLA, and PL-BLA synchrony. This reduction in VH-PL-BLA synchrony was not fully accounted for by non-specific locomotor effects, as revealed by comparing between epochs of movement and freezing in the controls. These results suggest that D1Rs regulate CFC by modulating synchronized oscillations within the hippocampus-prefrontal-amygdala circuit. They also add to growing evidence indicating that this circuit synchrony at retrieval reflects a neural signature of learned fear.


Assuntos
Dopamina , Receptores de Dopamina D1 , Ratos , Animais , Dopamina/farmacologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Medo/fisiologia
4.
JAMA Netw Open ; 6(7): e2323822, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37459095

RESUMO

Importance: Although professional soccer players appear to be at higher risk of neurodegenerative disease, the reason remains unknown. Objective: To examine whether heading frequency is associated with risk of cognitive impairment in retired professional soccer players. Design, Setting, and Participants: A UK nationwide cross-sectional study was conducted between August 15, 2020, and December 31, 2021, in 459 retired male professional soccer players older than 45 years and registered with the Professional Footballers' Association or a League Club Players' Association. Exposure: Data on heading frequency in 3 bands-0 to 5, 6 to 15, and more than 15 times per match or training session and other soccer-specific risk factors, such as player position and concussion-were collected through a self-reported questionnaire. Main Outcomes and Measures: Cognitive impairment was defined using the Telephone Interview for Cognitive Status-modified as scores of less than or equal to 21. Hopkins Verbal Learning Test, verbal fluency, and independent activities of daily living were also assessed. Test Your Memory and physician-diagnosed dementia/Alzheimer disease were self-reported via the questionnaire. Adjusted odds ratios (AORs) with 95% CIs were calculated. Results: Of 468 retired male professional soccer players who completed questionnaires (mean [SD] age, 63.68 [10.48]; body mass index, 27.22 [2.89]), 459 reported heading frequency: 114 headed 0 to 5 times, 185 headed 6 to 15 times, 160 headed more than 15 times per match, and 125 headed 0 to 5 times, 174 headed 6 to 15 times, and 160 headed more than 15 times per training session during their careers. The prevalence of cognitive impairment was 9.78% (0-5 times), 14.78% (6-15 times), and 15.20% (>15 times) per match (P = .51). Compared with players reporting 0 to 5 headers per match, the AORs were 2.71 (95% CI, 0.89-8.25) for players reporting 6 to 15 headers per match and 3.53 (95% CI, 1.13-11.04) for players reporting more than 15 headers per match (P = .03 for trend). Corresponding AORs for heading frequency per training session were 2.38 (95% CI, 0.82-6.95) for those reporting 6 to 15, and 3.40 (95% CI, 1.13-10.23) for those reporting more than 15 in comparison with those who reported 0 to 5 (P = .03 for trend). Concussion involving memory loss was also associated with a greater risk of cognitive impairment (AOR, 3.16; 95% CI, 1.08-9.22). Similar results were observed with other cognitive tests and self-reported physician-diagnosed dementia/Alzheimer disease. Conclusions and Relevance: The findings of this study suggest that repetitive heading during a professional soccer career is associated with an increased risk of cognitive impairment in later life. Further study is needed to establish the upper threshold for heading frequency to mitigate this risk.


Assuntos
Doença de Alzheimer , Concussão Encefálica , Disfunção Cognitiva , Doenças Neurodegenerativas , Futebol , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/complicações , Doenças Neurodegenerativas/complicações , Estudos Transversais , Atividades Cotidianas , Concussão Encefálica/epidemiologia , Concussão Encefálica/complicações , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/complicações
5.
J Psychopharmacol ; 37(11): 1051-1057, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522187

RESUMO

Animal models are important in preclinical psychopharmacology to study mechanisms and potential treatments for psychiatric disorders. A working group of 14 volunteers, comprising an international team of researchers from academia and industry, convened in 2021 to discuss how to improve the translational relevance and interpretation of findings from animal models that are used in preclinical psychopharmacology. The following paper distils the outcomes of the working group's discussions into 10 key considerations for the planning and reporting of behavioural studies in animal models relevant to psychiatric disorders. These form the iTRIPP guidelines (Improving Translational Relevance In Preclinical Psychopharmacology). These guidelines reflect the key considerations that the group thinks will likely have substantial impact in terms of improving the translational relevance of behavioural studies in animal models that are used to study psychiatric disorders and their treatment. They are relevant to the research community when drafting and reviewing manuscripts, presentations and grant applications. The iTRIPP guidelines are intended to complement general recommendations for planning and reporting animal studies that have been published elsewhere, by enabling researchers to fully consider the most appropriate animal model for the research purpose and to interpret their findings appropriately. This in turn will increase the clinical benefit of such research and is therefore important not only for the scientific community but also for patients and the lay public.


Assuntos
Transtornos Mentais , Psicofarmacologia , Animais , Humanos , Transtornos Mentais/tratamento farmacológico , Modelos Animais de Doenças
6.
Sports Med Open ; 9(1): 43, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289312

RESUMO

BACKGROUND: Previous studies based on death certificates have found professional soccer players were more likely to die with neurodegenerative diseases, including dementia. Therefore, this study aimed to investigate whether retired professional male soccer players would perform worse on cognitive tests and be more likely to self-report dementia diagnosis than general population control men. METHODS: A cross-sectional comparative study was conducted between August 2020 and October 2021 in the United Kingdom (UK). Professional soccer players were recruited through different soccer clubs in England, and general population control men were recruited from the East Midlands in the UK. We obtained self-reported postal questionnaire data on dementia and other neurodegenerative diseases, comorbidities and risk factors from 468 soccer players and 619 general population controls. Of these, 326 soccer players and 395 general population controls underwent telephone assessment for cognitive function. RESULTS: Retired soccer players were approximately twice as likely to score below established dementia screening cut-off scores on the Hopkins Verbal Learning Test (OR 2.06, 95%CI 1.11-3.83) and Verbal Fluency (OR 1.78, 95% CI 1.18-2.68), but not the Test Your Memory, modified Telephone Interview for Cognitive Status, and Instrumental Activities of Daily Living. Analyses were adjusted for age, education, hearing loss, body mass index, stroke, circulatory problems in the legs and concussion. While retired soccer players were younger, had fewer cardiovascular diseases and other morbidities and reported healthier lifestyles, 2.8% of retired soccer players reported medically diagnosed dementia and other neurodegenerative disease compared to 0.9% of controls (OR = 3.46, 95% CI 1.25-9.63) after adjustment for age and possible confounders. CONCLUSIONS: UK male retired soccer players had a higher risk of performing below established cut-off scores of dementia screening tests and were more likely to self-report medically diagnosed dementia and neurodegenerative diseases, despite having better overall physical health and fewer dementia risk factors. Further study is needed to determine specific soccer-related risk factors.

7.
J Pain ; 24(8): 1478-1492, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044295

RESUMO

Although chronic pain states have been associated with impaired cognitive functions, including memory and cognitive flexibility, the cognitive effects of osteoarthritis (OA) pain remain to be clarified. The aim of this study was to measure cognitive function in the mono-iodoacetate (MIA) rat model of chronic OA-like knee pain. We used young adult male Lister hooded rats, which are well-suited for cognitive testing. Rats received either a unilateral knee injection of MIA (3 mg/50 µL) or saline as control. Joint pain at rest was assessed for up to 12 weeks, using weight-bearing asymmetry, and referred pain at a distal site, using determination of hindpaw withdrawal thresholds. The watermaze delayed-matching-to-place test of rapid place learning, novel object recognition memory assay, and an operant response-shift and -reversal task were used to measure memory and behavioral flexibility. Open-field locomotor activity, startle response, and prepulse inhibition were also measured for comparison. MIA-injected rats showed markedly reduced weight-bearing on the injured limb, as well as pronounced cartilage damage and synovitis, but interestingly no changes in paw withdrawal threshold. Rearing was reduced, but otherwise, locomotor activity was normal and no changes in startle and prepulse inhibition were detected. MIA-injected rats had intact watermaze delayed-matching-to-place performance, suggesting no substantial change in hippocampal function, and there were no changes in novel object recognition memory or performance on the operant task of behavioral flexibility. Our finding that OA-like pain does not alter hippocampal function, unlike other chronic pain conditions, is consistent with human neuroimaging findings. PERSPECTIVE: Young adult rats with OA-like knee pain showed no impairments in hippocampal memory function and behavioral flexibility, suggesting that OA pain impacts cognitive functions less than other chronic pain conditions. In patients, OA pain may interact with other factors (e.g., age, socio-economic factors, and medication) to impair cognition.


Assuntos
Dor Crônica , Disfunção Cognitiva , Osteoartrite do Joelho , Ratos , Humanos , Masculino , Animais , Osteoartrite do Joelho/induzido quimicamente , Osteoartrite do Joelho/complicações , Modelos Animais de Doenças , Medição da Dor/métodos , Disfunção Cognitiva/etiologia
8.
BMJ Open ; 12(4): e054371, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379624

RESUMO

INTRODUCTION: Professional footballers commonly experience sports-related injury and repetitive microtrauma to the foot and ankle, placing them at risk of subsequent chronic pain and osteoarthritis (OA) of the foot and ankle. Similarly, repeated heading of the ball, head/neck injuries and concussion have been implicated in later development of neurodegenerative diseases such as dementia. A recent retrospective study found that death from neurodegenerative diseases was higher among former professional soccer players compared with age matched controls. However, well-designed lifetime studies are still needed to provide evidence regarding the prevalence of these conditions and their associated risk factors in retired professional football players compared with the general male population. OBJECTIVES: To determine whether former professional male footballers have a higher prevalence than the general male population of: (1) foot/ankle pain and radiographic OA; and (2) cognitive and motor impairments associated with dementia and Parkinson's disease. Secondary objectives are to identify specific football-related risk factors such as head impact/concussion for neurodegenerative conditions and foot/ankle injuries for chronic foot/ankle pain and OA. METHODS AND ANALYSIS: This is a cross-sectional, comparative study involving a questionnaire survey with subsamples of responders being assessed for cognitive function by telephone assessment, and foot/ankle OA by radiographic examination. A sample of 900 adult, male, ex professional footballers will be recruited and compared with a control group of 1100 age-matched general population men between 40 and 100 years old. Prevalence will be estimated per group. Poisson regression will be performed to determine prevalence ratio between the populations and logistic regression will be used to examine risk factors associated with each condition in footballers. ETHICS AND DISSEMINATION: This study was approved by the East Midlands-Leicester Central Research Ethics Committee on 23 January 2020 (REC ref: 19/EM/0354). The study results will be disseminated at national and international meetings and submitted for peer-review publication.


Assuntos
Disfunção Cognitiva , Osteoartrite , Futebol , Adulto , Idoso , Idoso de 80 Anos ou mais , Tornozelo , Disfunção Cognitiva/epidemiologia , Estudos Transversais , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/complicações , Osteoartrite/epidemiologia , Controle da População , Futebol/lesões , Reino Unido/epidemiologia
9.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980662

RESUMO

Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.


Assuntos
Medo , Hipocampo , Animais , Condicionamento Clássico , Condicionamento Psicológico , Masculino , Memória , Ratos
11.
Sci Rep ; 12(1): 943, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042904

RESUMO

Previous research has established links between chronic pain and impaired cognitive ability, as well as between chronic pain and anxiety, in osteoarthritis. Furthermore, there is evidence linking risk of osteoarthritis to lower educational attainment. However, the inter-play of these factors with key social factors (e.g., social deprivation) at the early stages of osteoarthritis are not understood. Here, we used data from waves 4, 5, 6 and 7 of the Survey of Health, Ageing and Retirement in Europe (SHARE) (n = 971) and selected a subsample of respondents who initially did not report a diagnosis of osteoarthritis until wave 6. We used path models to test how social deprivation, education and anxiety, before diagnosis (waves 4 and 5), affect the relationship between cognitive ability, pain and limitations in activities of daily living following diagnosis (waves 6 and 7). We show that high social deprivation before diagnosis predicts greater limitations in activities of daily living after diagnosis, with this effect partly mediated by impaired cognitive ability. We also find that higher educational attainment before diagnosis may protect against limitations in activities of daily living after diagnosis via better cognitive ability and lower anxiety. Therefore, improving cognitive ability and managing anxiety may mitigate the associations of social deprivation and low educational attainment with limitations in activities of daily living.


Assuntos
Osteoartrite/psicologia , Qualidade de Vida/psicologia , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Dor Crônica , Escolaridade , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicologia , Aposentadoria/psicologia , Fatores Socioeconômicos , Inquéritos e Questionários , Reino Unido/epidemiologia
12.
Brain Neurosci Adv ; 5: 23982128211036332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423137

RESUMO

There is currently no brain atlas available to specifically determine stereotaxic coordinates for neurosurgery in Lister hooded rats despite the popularity of this strain for behavioural neuroscience studies in the United Kingdom and elsewhere. We have created a dataset, which we refer to as 'Ratlas-LH' (for Lister hooded). Ratlas-LH combines in vivo magnetic resonance images of the brain of young adult male Lister hooded rats with ex vivo micro-computed tomography images of the ex vivo skull, as well as a set of delineations of brain regions, adapted from the Waxholm Space Atlas of the Sprague Dawley Rat Brain. Ratlas-LH was produced with an isotropic resolution of 0.15 mm. It has been labelled in such a way as to provide a stereotaxic coordinate system for the determination of distances relative to the skull landmark of bregma. We have demonstrated that the atlas can be used to determine stereotaxic coordinates to accurately target brain regions in the Lister hooded rat brain. Ratlas-LH is freely available to facilitate neurosurgical procedures in the Lister hooded rat.

13.
Brain Neurosci Adv ; 5: 2398212820975634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954259

RESUMO

Humans and non-human animals show great flexibility in spatial navigation, including the ability to return to specific locations based on as few as one single experience. To study spatial navigation in the laboratory, watermaze tasks, in which rats have to find a hidden platform in a pool of cloudy water surrounded by spatial cues, have long been used. Analogous tasks have been developed for human participants using virtual environments. Spatial learning in the watermaze is facilitated by the hippocampus. In particular, rapid, one-trial, allocentric place learning, as measured in the delayed-matching-to-place variant of the watermaze task, which requires rodents to learn repeatedly new locations in a familiar environment, is hippocampal dependent. In this article, we review some computational principles, embedded within a reinforcement learning framework, that utilise hippocampal spatial representations for navigation in watermaze tasks. We consider which key elements underlie their efficacy, and discuss their limitations in accounting for hippocampus-dependent navigation, both in terms of behavioural performance (i.e. how well do they reproduce behavioural measures of rapid place learning) and neurobiological realism (i.e. how well do they map to neurobiological substrates involved in rapid place learning). We discuss how an actor-critic architecture, enabling simultaneous assessment of the value of the current location and of the optimal direction to follow, can reproduce one-trial place learning performance as shown on watermaze and virtual delayed-matching-to-place tasks by rats and humans, respectively, if complemented with map-like place representations. The contribution of actor-critic mechanisms to delayed-matching-to-place performance is consistent with neurobiological findings implicating the striatum and hippocampo-striatal interaction in delayed-matching-to-place performance, given that the striatum has been associated with actor-critic mechanisms. Moreover, we illustrate that hierarchical computations embedded within an actor-critic architecture may help to account for aspects of flexible spatial navigation. The hierarchical reinforcement learning approach separates trajectory control via a temporal-difference error from goal selection via a goal prediction error and may account for flexible, trial-specific, navigation to familiar goal locations, as required in some arm-maze place memory tasks, although it does not capture one-trial learning of new goal locations, as observed in open field, including watermaze and virtual, delayed-matching-to-place tasks. Future models of one-shot learning of new goal locations, as observed on delayed-matching-to-place tasks, should incorporate hippocampal plasticity mechanisms that integrate new goal information with allocentric place representation, as such mechanisms are supported by substantial empirical evidence.

14.
Brain Neurosci Adv ; 5: 23982128211002725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174296

RESUMO

Spatial memory has been closely related to the medial temporal lobe and theta oscillations are thought to play a key role. However, it remains difficult to investigate medial temporal lobe activation related to spatial memory with non-invasive electrophysiological methods in humans. Here, we combined the virtual delayed-matching-to-place task, reverse-translated from the watermaze delayed-matching-to-place task in rats, with high-density electroencephalography recordings. Healthy young volunteers performed this computerised task in a virtual circular arena, which contained a hidden target whose location moved to a new place every four trials, allowing the assessment of rapid memory formation. Using behavioural measures as predictor variables for source reconstructed frequency-specific electroencephalography power, we found that inter-individual differences in 'search preference' during 'probe trials', a measure of one-trial place learning known from rodent studies to be particularly hippocampus-dependent, correlated predominantly with distinct theta-band oscillations (approximately 7 Hz), particularly in the right temporal lobe, the right striatum and inferior occipital cortex or cerebellum. This pattern was found during both encoding and retrieval/expression, but not in control analyses and could not be explained by motor confounds. Alpha-activity in sensorimotor and parietal cortex contralateral to the hand used for navigation also correlated (inversely) with search preference. This latter finding likely reflects movement-related factors associated with task performance, as well as a frequency difference in (ongoing) alpha-rhythm for high-performers versus low-performers that may contribute to these results indirectly. Relating inter-individual differences in ongoing brain activity to behaviour in a continuous rapid place-learning task that is suitable for a variety of populations, we could demonstrate that memory-related theta-band activity in temporal lobe can be measured with electroencephalography recordings. This approach holds great potential for further studies investigating the interactions within this network during encoding and retrieval, as well as neuromodulatory impacts and age-related changes.

15.
Hippocampus ; 30(10): 1021-1043, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396678

RESUMO

Reduced inhibitory GABA function, so-called neural disinhibition, has been implicated in cognitive disorders, including schizophrenia and age-related cognitive decline. We previously showed in rats that hippocampal disinhibition by local microinfusion of the GABA-A receptor antagonist picrotoxin disrupted memory and attention and enhanced hippocampal multi-unit burst firing recorded around the infusion site under isoflurane anesthesia. Here, we analyzed the hippocampal local field potential (LFP) recorded alongside the multi-unit data. We predicted frequency-specific LFP changes, based on previous studies implicating GABA in hippocampal oscillations, with the weight of evidence suggesting that disinhibition would facilitate theta and disrupt gamma oscillations. Using a new semi-automated method based on the kurtosis of the LFP peak-amplitude distribution as well as on amplitude envelope thresholding, we separated three distinct hippocampal LFP states under isoflurane anesthesia: "burst" and "suppression" states-high-amplitude LFP spike bursts and the interspersed low-amplitudeperiods-and a medium-amplitude "continuous" state. The burst state showed greater overall power than suppression and continuous states and higher relative delta/theta power, but lower relative beta/gamma power. The burst state also showed reduced functional connectivity across the hippocampal recording area, especially around theta and beta frequencies. Overall neuronal firing was higher in the burst than the other two states, whereas the proportion of burst firing was higher in burst and continuous states than the suppression state. Disinhibition caused state- and frequency-dependent LFP changes, tending to increase power at lower frequencies (<20 Hz), but to decrease power and connectivity at higher frequencies (>20 Hz) in burst and suppression states. The disinhibition-induced enhancement of multi-unit bursting was also state-dependent, tending to be more pronounced in burst and suppression states than the continuous state. Overall, we characterized three distinct hippocampal LFP states in isoflurane-anesthetized rats. Disinhibition changed hippocampal LFP oscillations in a state- and frequency-dependent way. Moreover, the disinhibition-induced enhancement of multi-unit bursting was also LFP state-dependent.


Assuntos
Potenciais de Ação/fisiologia , Anestésicos Inalatórios/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Hipocampo/efeitos dos fármacos , Injeções Intraventriculares , Isoflurano/administração & dosagem , Masculino , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Picrotoxina/administração & dosagem , Ratos
16.
Psychopharmacology (Berl) ; 236(6): 1771-1782, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30656366

RESUMO

RATIONALE: Dopamine D1 receptor (D1R) signalling is involved in contextual fear conditioning. The D1R antagonist SCH23390 impairs the acquisition of contextual fear when administered systemically or infused locally into the dorsal hippocampus or basolateral amygdala. OBJECTIVES: We determined if state dependency may account for the impairment in contextual fear conditioning caused by systemic SCH23390 administration. We also examined if the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens (NAc), and ventral hippocampus (VH) are involved in mediating the effect of systemic SCH23390 treatment on contextual fear conditioning. METHODS: In experiment 1, SCH23390 (0.1 mg/kg) or vehicle was given before contextual fear conditioning and/or retrieval. In experiment 2, SCH23390 (2.5 µg/0.5 uL) or vehicle was infused locally into dmPFC, NAc, or VH before contextual fear conditioning, and retrieval was tested drug-free. Freezing was quantified as a measure of contextual fear. RESULTS: In experiment 1, SCH23390 given before conditioning or before both conditioning and retrieval decreased freezing at retrieval, whereas SCH23390 given only before retrieval had no effect. In experiment 2, SCH23390 infused into dmPFC before conditioning decreased freezing at retrieval, while infusion of SCH23390 into NAc or VH had no effect. CONCLUSIONS: The results of experiment 1 confirm those of previous studies indicating that D1Rs are required for the acquisition but not retrieval of contextual fear and rule out state dependency as an explanation for these findings. Moreover, the results of experiment 2 provide evidence that dmPFC is also part of the neural circuitry through which D1R signalling regulates contextual fear conditioning.


Assuntos
Condicionamento Operante/fisiologia , Antagonistas de Dopamina/farmacologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Benzazepinas/farmacologia , Condicionamento Operante/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/psicologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Receptores de Dopamina D1/antagonistas & inibidores
17.
Hippocampus ; 28(11): 796-812, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30451330

RESUMO

Watermaze tests of place learning and memory in rodents and corresponding reverse-translated human paradigms in real or virtual environments are key tools to study hippocampal function. In common variants, the animal or human participant has to find a hidden goal that remains in the same place over many trials, allowing for incremental learning of the place with reference to distal cues surrounding the circular, featureless maze. Although the hippocampus is involved in incremental place learning, rodent studies have shown that the delayed-matching-to-place (DMP) watermaze test is a more sensitive assay of hippocampal function. On the DMP test, the goal location changes every four trials, requiring the rapid updating of place memory. Here, we developed a virtual DMP test reverse-translated from the rat watermaze DMP paradigm. In two replications, participants showed 1-trial place learning, evidenced by marked latency and path length savings between Trials 1 and 2 to the same goal location, and by search preference for the vicinity of the goal when Trial 2 was run as probe trial (during which the goal was removed). The performance was remarkably similar to rats' performance on the watermaze DMP test. In both replications, male participants showed greater savings and search preferences compared to female participants. Male participants also showed better mental rotation performance, although mental rotation scores did not consistently correlate with DMP performance measures, pointing to distinct neurocognitive mechanisms. The remarkable similarity between rodent and human DMP performance suggests similar underlying neuro-psychological mechanisms, including hippocampus dependence. The new virtual DMP test may, therefore, provide a sensitive tool to probe human hippocampal function.


Assuntos
Aprendizagem em Labirinto , Testes Psicológicos , Caracteres Sexuais , Realidade Virtual , Adolescente , Adulto , Animais , Feminino , Objetivos , Humanos , Imaginação/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Rotação , Percepção Espacial/fisiologia , Jogos de Vídeo , Adulto Jovem
18.
Br J Pharmacol ; 174(19): 3211-3225, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28477384

RESUMO

We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.


Assuntos
Transtornos Cognitivos/fisiopatologia , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Transtornos Cognitivos/tratamento farmacológico , Humanos , Transtornos Mentais/fisiopatologia , Inibição Neural , Transmissão Sináptica , Ácido gama-Aminobutírico/fisiologia
19.
Cereb Cortex ; 27(9): 4447-4462, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27550864

RESUMO

Subconvulsive hippocampal neural disinhibition, that is reduced GABAergic inhibition, has been implicated in neuropsychiatric disorders characterized by attentional and memory deficits, including schizophrenia and age-related cognitive decline. Considering that neural disinhibition may disrupt both intra-hippocampal processing and processing in hippocampal projection sites, we hypothesized that hippocampal disinhibition disrupts hippocampus-dependent memory performance and, based on strong hippocampo-prefrontal connectivity, also prefrontal-dependent attention. In support of this hypothesis, we report that acute hippocampal disinhibition by microinfusion of the GABA-A receptor antagonist picrotoxin in rats impaired hippocampus-dependent everyday-type rapid place learning performance on the watermaze delayed-matching-to-place test and prefrontal-dependent attentional performance on the 5-choice-serial-reaction-time test, which does not normally require the hippocampus. For comparison, we also examined psychosis-related sensorimotor effects, using startle/prepulse inhibition (PPI) and locomotor testing. Hippocampal picrotoxin moderately increased locomotion and slightly reduced startle reactivity, without affecting PPI. In vivo electrophysiological recordings in the vicinity of the infusion site showed that picrotoxin mainly enhanced burst firing of hippocampal neurons. In conclusion, hippocampal neural disinhibition disrupts hippocampus-dependent memory performance and also manifests through deficits in not normally hippocampus-dependent attentional performance. These behavioral deficits may reflect a disrupted control of burst firing, which may disrupt hippocampal processing and cause aberrant drive to hippocampal projection sites.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Hipocampo/fisiologia , Transtornos da Memória/fisiopatologia , Animais , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Picrotoxina/farmacologia , Ratos , Reflexo de Sobressalto/efeitos dos fármacos
20.
Hippocampus ; 25(12): 1517-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25926084

RESUMO

Hippocampal lesions tend to facilitate two-way active avoidance (2WAA) conditioning, where rats learn to cross to the opposite side of a conditioning chamber to avoid a tone-signaled footshock. This classical finding has been suggested to reflect that hippocampus-dependent place/context memory inhibits 2WAA (a crossing response to the opposite side is inhibited by the memory that this is the place where a shock was received on the previous trial). However, more recent research suggests other aspects of hippocampal function that may support 2WAA learning. More specifically, the ventral hippocampus has been shown to contribute to behavioral responses to aversive stimuli and to positively modulate the meso-accumbens dopamine system, whose activation has been implicated in 2WAA learning. Permanent hippocampal lesions may not reveal these contributions because, following complete and permanent loss of hippocampal output, other brain regions may mediate these processes or because deficits could be masked by lesion-induced extra-hippocampal changes, including an upregulation of accumbal dopamine transmission. Here, we re-examined the hippocampal role in 2WAA learning in Wistar rats, using permanent NMDA-induced neurotoxic lesions and temporary functional inhibition by muscimol or tetrodotoxin (TTX) infusion. Complete hippocampal lesions tended to facilitate 2WAA learning, whereas ventral (VH) or dorsal hippocampal (DH) lesions had no effect. In contrast, VH or DH muscimol or TTX infusions impaired 2WAA learning. Ventral infusions caused an immediate impairment, whereas after dorsal infusions rats showed intact 2WAA learning for 40-50 min, before a marked deficit emerged. These data show that functional inhibition of ventral hippocampus disrupts 2WAA learning, while the delayed impairment following dorsal infusions may reflect the time required for drug diffusion to ventral hippocampus. Overall, using temporary functional inhibition, our study shows that the ventral hippocampus contributes to 2WAA learning. Permanent lesions may not reveal these contributions due to functional compensation and extra-hippocampal lesion effects.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Psicológico/fisiologia , Hipocampo/fisiologia , Modelos Animais , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Cateteres de Demora , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Microinjeções , Muscimol/farmacologia , N-Metilaspartato/toxicidade , Testes Neuropsicológicos , Fotomicrografia , Ratos Wistar , Tetrodotoxina/farmacologia , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...